
Intermittency transition to generalized synchronization in coupled time-delay systems

D. V. Senthilkumar* and M. Lakshmanan†

Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
�Received 10 April 2007; published 20 December 2007�

We report the nature of the transition to generalized synchronization �GS� in a system of two coupled scalar
piecewise linear time-delay systems using the auxiliary system approach. We demonstrate that the transition to
GS occurs via an on-off intermittency route and that it also exhibits characteristically distinct behaviors for
different coupling configurations. In particular, the intermittency transition occurs in a rather broad range of
coupling strength for the error feedback coupling configuration and in a narrow range of coupling strength for
the direct feedback coupling configuration. It is also shown that the intermittent dynamics displays periodic
bursts of periods equal to the delay time of the response system in the former case, while they occur in random
time intervals of finite duration in the latter case. The robustness of these transitions with system parameters
and delay times has also been studied for both linear and nonlinear coupling configurations. The results are
corroborated analytically by suitable stability conditions for asymptotically stable synchronized states and
numerically by the probability of synchronization and by the transition of sub-Lyapunov exponents of the
coupled time-delay systems. We have also indicated the reason behind these distinct transitions by referring to
the unstable periodic orbit theory of intermittency synchronization in low-dimensional systems.
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I. INTRODUCTION

Synchronization of interacting chaotic oscillators is one of
the most interesting nonlinear phenomenon and is an inher-
ent part of many natural systems �cf. �1,2��. The concept of
synchronization is receiving a central importance in recent
research in nonlinear dynamics due to its potential applica-
tions in diverse areas of science and technology. Since the
identification of chaotic synchronization �3–5�, several works
have appeared in identifying and demonstrating basic kinds
of synchronization both theoretically and experimentally
�1–5�. There are also attempts to find a unifying framework
for defining the overall class of chaotic synchronizations
�6–8�.

One of the interesting synchronization behaviors of unidi-
rectionally coupled chaotic systems is generalized synchro-
nization �GS�, which was conceptually introduced in Ref.
�9�. Generalized synchronization is observed in coupled non-
identical systems, where there exists some functional relation
between the drive X�t� and the response Y�t� systems—that
is, Y�t�=F(X�t�). With GS, all the response systems coupled
to the drive lose their intrinsic chaoticity �sensitivity to initial
conditions� under the same driving and follow the same tra-
jectory. Hence the presence of GS can be detected using the
so-called auxiliary system approach �10�, where an addi-
tional system �auxiliary system� identical to the response
system is coupled to the drive in similar fashion. The auxil-
iary system approach is particularly appealing since it can be
implemented directly in an experiment and, in addition, this
method allows one to utilize analytical approaches for study-
ing GS. However, one has to be aware that if there are mul-
tiple basins of attraction for the coupled drive-response sys-
tem, then the auxiliary system approach can fail.

Generalized synchronization has been well studied and
understood in systems with few degrees of freedom and for
discrete maps �9–15�. The concept of GS has also been ex-
tended to spatially extended chaotic systems such as coupled
Ginzburg-Landau equations �16�. Recently, the terminology
intermittent generalized synchronization �IGS� �17� was in-
troduced in diffusively coupled Rössler systems, in analogy
with intermittent lag synchronization �ILS� �18,19� and inter-
mittent phase synchronization �IPS� �20–22�, and also ex-
perimentally in coupled Chua’s circuits. Very recently, it has
been shown �23� that the transition to intermittent chaotic
synchronization �in the case of complete synchronization� is
characteristically distinct for geometrically different chaotic
attractors. In particular, it has been shown that for phase-
coherent chaotic attractors �Rössler attractor� the transition
occurs immediately as soon as the coupling strength is in-
creased from zero, and for nonphase-coherent attractors �Lo-
renz attractor�, the transition occurs slowly as the coupling is
increased from zero.

Time-delay systems form an important class of dynamical
systems and recently they are receiving central importance in
investigating the phenomenon of chaotic synchronizations in
view of their infinite-dimensional nature and feasibility of
experimental realization �24–27�. While the concept of GS
has been well established in low-dimensional systems, it has
not yet been studied in detail in coupled time-delay systems
and only very few recent studies have dealt with GS in time-
delay systems �24,25�. In particular, the mechanism of onset
of GS in coupled time-delay systems and its characteristic
properties have not yet been clearly understood and require
urgent attention.

In this paper, we investigate the characteristic properties
of the nature of the onset of GS from an asynchronous state
in unidirectionally coupled piecewise linear time-delay sys-
tems exhibiting highly nonphase-coherent hyperchaotic at-
tractors �26�. We find that the onset of GS is preceded by an
on-off intermittency mechanism from the desynchronized
state. We have also identified that the intermittency transition
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to GS exhibits characteristically distinct behaviors for differ-
ent coupling schemes. In particular, the intermittency transi-
tion occurs in a broad range of coupling strength for error
feedback coupling configurations and in a narrow range of
coupling strength for direct feedback coupling configura-
tions, beyond a certain threshold value of coupling strength.
In addition, the intermittent dynamics is characterized by pe-
riodic bursts away from the temporal synchronized state with
period equal to the delay time of the response system in the
case of a broad range intermittency transition whereas it is
characterized by random time intervals in the case of a nar-
row range intermittency transition. We have also confirmed
these dynamical behaviors in both linear and nonlinear cou-
pling configurations. We have analyzed these transitions ana-
lytically using a Krasvoskii-Lyapunov functional approach
and numerically by the probability of synchronization and by
the sub-Lyapunov exponents. We have also addressed the
reason behind these transitions using periodic orbit theory.
The robustness of these transitions with the system param-
eters, in both the linear and nonlinear, error feedback and
direct feedback coupling configurations, is also studied.

The plan of the paper is as follows. In Sec. II, we will
point out the existence of a broad range intermittency tran-
sition to GS for linear error feedback coupling proportional
to x1�t�−x2�t� while in Sec. III the existence of a narrow
range intermittency transition is shown for linear direct feed-
back coupling of the form x1�t�, where x1�t� and x2�t� are the
drive and response signals, respectively �see below for de-
tails�. In Sec. IV we will discuss the existence of a broad
range intermittency transition for nonlinear error feedback
coupling of the form f(x1�t−�2�)− f(x2�t−�2�), where f�x� is
an odd piecewise linear function. The existence of a narrow
range intermittency transition is discussed in Sec. V for non-
linear direct feedback coupling of the form f(x1�t−�2�). Fi-
nally in Sec. VI, we will summarize our results.

II. BROAD RANGE (SLOW OR DELAYED)
INTERMITTENCY TRANSITION TO GS FOR

LINEAR ERROR FEEDBACK COUPLING
OF THE FORM x1„t…−x2„t…

We consider the following first-order delay differential
equation introduced by Lu and He �28� and discussed in
detail by Thangavel et al. �29�,

ẋ�t� = − ax�t� + bf„x�t − ��… , �1�

where a and b are parameters, � is the time-delay, and f is an
odd piecewise linear function defined as

f�x� =�
0, x � − 4/3,

− 1.5x − 2, − 4/3 � x � − 0.8,

x , − 0.8 � x � 0.8,

− 1.5x + 2, 0.8 � x � 4/3,

0, x � 4/3.
� �2�

Recently, we have reported �30� that the system �1� exhibits
hyperchaotic behavior for suitable parametric values. For our
present study, we find that for the choice of the parameters

a=1.0, b=1.2, and �=15.0 with the initial condition x�t�
=0.9, t� �−5,0�, Eq. �1� exhibits hyperchaos. The corre-
sponding pseudoattractor is shown in Fig. 1. The hypercha-
otic nature of Eq. �1� is confirmed by the existence of mul-
tiple positive Lyapunov exponents. The first ten maximal
Lyapunov exponents for the above choice of parameters as a
function of delay time � are shown in Fig. 2 �the spectrum of
Lyapunov exponents in this paper are calculated using the
procedure suggested by Farmer �31��.

To be specific, we first consider the following unidirec-
tional, linearly coupled systems with drive x1�t�, response
x2�t�, and an auxiliary x3�t�:

ẋ1�t� = − ax1�t� + b1f„x1�t − �1�… , �3a�

ẋ2�t� = − ax2�t� + b2f„x2�t − �2�… + b3�x1�t� − x2�t�� ,

�3b�

ẋ3�t� = − ax3�t� + b2f„x3�t − �2�… + b3�x1�t� − x3�t�� ,

�3c�

where b1, b2, and b3 are constant parameters and �1 and �2
are constant delay parameters. Note that when b1�b2 or �1
��2 or both, corresponding to parameter mismatches, we
have unidirectionally coupled nonidentical systems �Eqs.
�3a� and �3b��, while the auxiliary system is given by �3c�
and f�x� is the odd piecewise linear function �2�. The cou-
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FIG. 1. The hyperchaotic attractor of the system �1� for the
parameter values a=1.0, b=1.2, and �=15.0.
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FIG. 2. The first ten maximal Lyapunov exponents �max of the
scalar time-delay system for the parameter values a=1.0, b1=1.2,
and �� �2,29� �which is the same as Eq. �1� with b1 replaced by b�,
Eq. �3a�.
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pling in �3b� may be also called a linear error feedback cou-
pling.

For simplicity, we have chosen b1=b2 so that the time
delays �1 and �2 alone introduce a simple form of parameter
mismatch between the drive x1�t� and the response x2�t�. We
have chosen the values of the parameters as a=1.0, b1=b2
=1.2, �1=20, and �2=25. For this parametric choice, in the
absence of coupling, all three systems �3a�–�3c� evolve inde-
pendently and exhibit hyperchaotic attractors, which is con-
firmed by the existence of multiple positive Lyapunov expo-
nents �Fig. 2�. The actual value of the positive Lyapunov
exponents for �=20 are 0.009 16, 0.007 59, 0.005 65,
0.002 83, and 0.000 73 and for �=25 they are 0.012 34,
0.010 67, 0.008 86, 0.006 58, 0.003 86, 0.002 29, 0.001 23,
and 0.000 33.

A. Stability condition

With GS, as all response systems under the same driving
follow the same trajectory, it is sufficient to identify the ex-
istence condition for establishment of complete synchroniza-
tion �CS� between the response x2�t� and the auxiliary x3�t�
systems in order to achieve GS between the drive x1�t� and
the response x2�t� systems.

Now, for CS to occur between the response x2�t� and aux-
iliary x3�t� variables, we consider the time evolution of the
difference system with the state variable �=x3�t�−x2�t�. It
can be written for small values of � as

�̇ = − �a + b3�� + b2f�„x2�t − �2�…��2
, �4�

where

f��x� = �− 1.5, − 4/3 � x � − 0.8,

1, − 0.8 � x � 0.8,

− 1.5, 0.8 � x � 4/3.
� �5�

The synchronization manifold x2�t�=x3�t� is locally attract-
ing if the origin of this equation is stable. Following a
Krasovskii-Lyapunov functional approach, we define a posi-
tive definite Lyapunov functional of the form �27,32,33� �de-
tails of the stability analysis are given in the Appendix�

V�t� =
1

2
�2 + ��

�2

0

�2�t + ��d� , �6�

where � is an arbitrary positive parameter, ��0. The solu-
tion of Eq. �4�—namely, �=0—is stable if the derivative of
the functional along the trajectory of Eq. �4� is negative. This

negativity condition is satisfied if b3+a�
b2

2f�2(x2�t−�2�)

4� +�,
from which it turns out that the sufficient condition for
asymptotic stability is

a + b3 � �b2f�„x2�t − �2�…� . �7�

Now from the form of the piecewise linear function f�x�
given by Eq. �2�, we have

�f�„x2�t − �2�…� = 	1.5, 0.8 � �x2� � 4/3,

1.0, �x2� � 0.8.

 �8�

Consequently the stability condition �7� becomes a+b3
� �1.5b2�� �b2�. Thus one can take

a + b3 � �b2� �9�

as the less stringent or approximate stability condition �as the
synchronization dynamics of the coupled systems �3a�–�3c�
can occur even beyond the inner region, �x2��0.8� for �7� to
be valid, while

a + b3 � �1.5b2� �10�

can be considered as the most general or stringent or exact
stability condition �as the full synchronization dynamics of
the coupled systems �3a�–�3c� lies within the outer region
0.8� �x2�� 4

3 � specified by �7� for asymptotic stability of the
synchronized state �=0.

B. Approximate (intermittent) generalized synchronization

In order to understand the mechanism of the transition to
a synchronized state, it will be important to follow the dy-
namics from the parameter values at which the less stringent
condition is satisfied. Figure 3�a� shows the approximate GS
�which may also be termed as IGS in analogy with ILS�
between the drive x1�t� and the response x2�t� systems,
whereas Fig. 3�b� shows the approximate CS between the
response x2�t� and the auxiliary x3�t� systems for the values
of the parameters a=1.0, b1=b2=1.2, �1=20, �2=25, and
b3=0.4 satisfying the less stringent condition �9�. Perfect GS
and perfect CS are shown in Figs. 3�c� and 3�d�, respectively,
for b3=0.9 satisfying the general stability condition �10�.
Time traces of the difference x2�t�−x3�t� corresponding to
approximate CS �Fig. 3�b�� are shown in Fig. 4, which show
periodic bursts with a period between two consecutive bursts
approximately equal to the time delay of the response sys-
tem, t�25, when “on” states of amplitude greater than �0.01�
are considered. Figure 4�b� shows an enlarged �in x scale�
part of Fig. 4�a� to view the bursts at periodic intervals when
bursts of larger amplitudes ��� �0.01�� are considered, while
Fig. 4�c� is an enlarged �in y scale� version of Fig. 4�b� to
show random bursts when bursts of smaller amplitude �
� �0.01� are considered.

Usually the intermittent dynamics is characterized by the
entrainment of the dynamical variables in random time inter-
vals of finite duration �34,35�. But from Fig. 4�b�, it is evi-
dent that the intermittent dynamics displays periodic bursts
from the synchronous state with period approximately equal
to the delay time of the response system, when amplitudes of
the state variable ���= �x3�t�−x2�t���0.01 are considered, for
the values of the coupling strength at which the less stringent
stability condition �9� is satisfied. The statistical features as-
sociated with the intermittent dynamics are analyzed by cal-
culating the distribution of laminar phases 	�t� with ampli-
tude less than a threshold value of �. A universal asymptotic
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power law distribution 	�t�
 t−� is observed for the thresh-
old value �= �0.0001� with the value of the exponent
�=−1.5 as shown in Fig. 5�b�, which is quite typical for
on-off intermittency. On the other hand, the distribution of
laminar phases 	�t� for the value of the threshold value

of ��=0.1� shows a periodic structures �Fig. 5�a��, where
the peaks occur approximately at t=nT, n=1,2 , . . ., where
T��2 is the period of the lowest periodic orbit of the un-
coupled system �3b�. Note that a −3 /2 power law is observed
for the intermittent dynamics shown in Fig. 4 for laminar
phases 	�t� with amplitude less than �= �0.0001� �as an il-
lustrative example�, which is also evident from Fig. 4�c�,
while periodic bursts are observed for “on” state of ampli-
tude greater than �0.01�. It is to be noted that such periodic
bursts of period approximately equal to the time delay of the
response system for a larger threshold value of � along with
the on-off intermittency behavior have also been observed by
Zhan et al. �24� in unidirectionally coupled Mackey-Glass
systems, where the authors discussed the relation between
two modes of synchronization—namely, CS and GS.
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FIG. 4. The intermittent dynamics of the response x2�t� and
auxiliary x3�t� systems for the value of the coupling strength b3

=0.4. �a� Time traces of the difference x2�t�−x3�t� corresponding to
Fig. 3�b�. �b� Enlarged in x scale to show bursts at periodic intervals
when bursts of larger amplitudes �� �0.01� are considered. �c� En-
larged in y scale to show random bursts when bursts of smaller
amplitudes �� �0.01� are considered.

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1

x 2
(t

)

x1(t)

(a)

0.7

0.8

0.9

1

0.7 0.8 0.9 1

x 3
(t

)

x2(t)

(b)

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1

x 2
(t

)

x1(t)

(c)

0.7

0.8

0.9

1

0.7 0.8 0.9 1

x 3
(t

)

x2(t)

(d)

FIG. 3. Dynamics in the phase space of the
systems �3a�–�3c�. �a� and �b� Approximate GS
and CS, respectively, for the value of the cou-
pling strength b3=0.4. �c� and �d� Perfect GS and
CS, respectively, for the value of the coupling
strength b3=0.9.
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FIG. 5. The statistical distribution of laminar phases correspond-
ing to Fig. 4. �a� For threshold value �= �0.1� and �b� for the thresh-
old value of �= �0.0001�.
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C. Characterization of IGS

Now we characterize the intermittency transition to GS by
using �i� the notion of the probability of synchronization,
��b3�, as a function of the coupling strength b3 �23�, which
can be defined as the fraction of time during which �x2�t�
−x3�t��� occurs, where  is a small but arbitrary threshold,
and �ii� from the changes in the sign of sub-Lyapunov expo-
nents �which are nothing but the Lyapunov exponents of the
subsystem� in the spectrum of Lyapunov exponents of the
coupled time-delay systems. Figure 6�a� shows the probabil-
ity of synchronization, ��b3�, as a function of the coupling
strength b3 calculated from the variables of the response x2�t�
and the auxiliary x3�t� systems for CS between them. For the
range of b3� �0,0.39�, there is the absence of any entrain-
ment between the systems resulting in asynchronous behav-
ior and the probability of synchronization, ��b3�, is practi-
cally zero in this region. However, starting from the value of
b3=0.39 and above, there appear oscillations in the value of
the probability of synchronization ��b3� between zero and
some finite values less than unity, exhibiting an intermittency
transition to GS in the range of b3� �0.4,0.62� for which the
less stringent stability condition �9� is satisfied. Beyond b3
=0.62, ��b3� attains unit value, indicating perfect GS. Note
that the above intermittency transition occurs in a rather wide
range of the coupling strength �this can also be termed as a
slow or delayed intermittency transition in analogy with the
terminology used in �23��, which has also been confirmed
from the transition of successive largest sub-Lyapunov expo-
nents in the corresponding range of coupling strength.

The spectra of the first 15 largest Lyapunov exponents
�max of the coupled drive x1�t� and response x2�t� systems are
shown in Fig. 6�b�. From the general stability condition �7�,

it is evident that for the chosen value of the parameter a
=1.0, the less stringent stability condition �9� is satisfied for
the values of coupling strength b3�0.2. Correspondingly,
the least positive sub-Lyapunov exponent of the response
system �3b� gradually becomes negative from b3�0.2. Sub-
sequently, the remaining positive sub-Lyapunov exponents
gradually become negative and attain saturation in the range
of b3� �0.2,0.8�. This is in accordance with the fact that the
less stringent stability condition is satisfied only in the cor-
responding range of coupling strength b3. This is a strong
indication of the broad range intermittency �IGS� transition
to GS. For b3�0.8, the general stability condition �10� is
satisfied, where one can observe perfect GS as is evidenced
both by the probability of synchronization approaching unit
value and by the negative saturation of sub-Lyapunov expo-
nents calculated between the drive and response systems.
The inference is that the correlation between the oscillations
of the systems eventually becomes stronger with the strength
of the coupling, and this is indicated by the successive tran-
sition of sub-Lyapunov exponents to negative values.

It is a well-established fact that a chaotic attractor can be
considered as a pool of infinitely many unstable periodic
orbits �UPOs� of all periods. Synchronization between two
coupled systems is said to be asymptotically stable if all the
unstable periodic orbits of the response system are stabilized
in the transverse direction of the synchronization manifold.
Consequently, all the trajectories transverse to the synchro-
nization manifold converge for suitable values of coupling
strength and this is reflected in the negative values of the
transverse Lyapunov exponents �sub-Lyapunov exponents�
upon synchronization �23�. From our results, we find that the
sub-Lyapunov exponents gradually become negative in a
broad range of coupling strength b3 after a certain threshold
value and this is in accordance with the known results on
gradual stabilization of unstable periodic orbits of the re-
sponse system in the complex synchronization manifold of
low-dimensional systems �23�. Unfortunately, methods for
locating UPOs and calculating their transverse Lyapunov ex-
ponents have not been well established for time-delay sys-
tems and hence a quantitative proof of the gradual stabiliza-
tion of UPOs has not been given here. However, the gradual
stabilization of UPOs along with their transverse Lyapunov
exponent in the range of the intermittency transition has been
reported for the case of coupled Rössler and Lorenz systems
in Ref. �23�. It can then be inferred from these studies that
the broad range intermittency transition in the case of error
feedback coupling configuration is due to the fact that the
strength of the coupling b3 contributes only less significantly
to stabilize the UPOs as the error x1�t�−x2�t� gradually be-
comes smaller from the transition regime after a certain
threshold value of the coupling strength.

The robustness of the intermittency transition in a broad
range of coupling strength with the system parameter
b2� �1.1,1.6� and with the coupling delay �2� �10,20�
has also been confirmed. Figure 7�a� shows the three-
dimensional plot of the probability of synchronization as a
function of the system parameter b2 and the coupling
strength b3, while Fig. 7�b� shows the three-dimensional plot
of ��b3� as a function of the coupling delay �2 and the
coupling strength b3. The above figures �Fig. 7� clearly
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FIG. 6. �a� The probability of synchronization, ��b3�, between
the response x2�t� and auxiliary x3�t� systems. �b� Largest Lyapunov
exponents of the coupled drive x1�t� and response x2�t� systems �3a�
and �3b�.
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reveal the broad range intermittency transition to GS in the
case of the linear error feedback coupling scheme.

III. NARROW RANGE (IMMEDIATE) INTERMITTENCY
TRANSITION TO GS FOR LINEAR DIRECT
FEEDBACK COUPLING OF THE FORM x1„t…

To illustrate the narrow range intermittency transition to
GS, we consider the unidirectional linear direct feedback
coupling of the form

ẋ1�t� = − ax1�t� + b1f„x1�t − �1�… , �11a�

ẋ2�t� = − ax2�t� + b2f„x2�t − �2�… + b3x1�t� , �11b�

ẋ3�t� = − ax3�t� + b2f„x3�t − �2�… + b3x1�t� , �11c�

where f�x� is of the same odd piecewise linear form as in Eq.
�2�. Assuming the same values of the parameters as before
and proceeding in the same way as in the previous case, one
can obtain the sufficient condition for asymptotically stable
CS between the response x2�t�, Eq. �11b�, and the auxiliary
x3�t�, Eq. �11c�, systems as

a � �b2f�„x2�t − �2�…� . �12�

It is to be noted that the above stability condition holds good
only for the case when coupling is present—that is, b3�0.
When there is no coupling �b3=0�, by definition, there will
be a desynchronized chaotic state. As soon as the value of
the coupling strength is increased from zero, the stability
condition �12� always leads to a synchronized state even for
very feeble values of b3 for parameters satisfying the stabil-
ity condition, as it is independent of the coupling strength b3.
As the values of the parameters satisfying the stability con-
dition �12� rapidly leads to an immediate transition to the
synchronized state as soon as the coupling is switched on, it
is difficult to identify the possible transitions to the synchro-
nized state. In addition, as the stability condition is indepen-
dent of the coupling strength b3, one is not able to explore
the dynamical transitions as a function of coupling strength
for the parameter values satisfying the stability condition
�12�. Hence we study the synchronization transition by
choosing the parameters violating the stability condition as
a=1.0, b1=1.2, b2=1.1, and �1=�2=20 and varying the cou-
pling strength b3 in order to identify the mechanism of the
synchronization transition. Here, in this case b1 and b2 alone
introduce the parameter mismatch while �1=�2 �it may be
added that the qualitative nature of the dynamical transitions
remains the same even when the mismatch is either in time
delays alone—that is, �1��2, b1=b2—or in both the system
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FIG. 8. Dynamics in the phase space of the
systems �11a�–�11c�: �a� and �b� Approximate GS
and CS, respectively, for the value of the cou-
pling strength b3=0.64. �c� and �d� Perfect GS
and CS, respectively, for the value of the cou-
pling strength b3=0.8.
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parameters and time delays, b1�b2, �1��2, as confirmed
below in the three-dimensional plots of Fig. 12�.

As b3 is varied from zero, the transition from the desyn-
chronized state to approximate GS occurs for b3�0.6. Ap-
proximate GS �IGS� between the drive system x1�t� specified
by Eq. �11a� and the response system x2�t� represented by
Eq. �11b� is shown in Fig. 8�a� whereas the approximate CS
between the response x2�t� �Eq. �11b�� and the auxiliary x3�t�
�Eq. �11c�� systems is shown in Fig. 8�b� for the value of the
coupling strength b3=0.64. Prefect GS and CS are shown in
Figs. 8�c� and 8�d�, respectively, for the value of the coupling
strength b3=0.8. The intermittent dynamics at the transition
regime corresponding to the value of the coupling strength
b3=0.64 is shown in Fig. 9, in which Fig. 9�b� shows the
enlarged part of Fig. 9�a�. It is clear from this figure that the
intermittent dynamics displays intermittent bursts at random
time intervals. The statistical distribution of the laminar
phases again shows a universal asymptotic −1.5 power law
behavior for the threshold value �= �0.0001�, which is typical
for on-off intermittency transitions, as shown in Fig. 10.

Now we characterize the intermittency transition to GS in
the present case, again by using the notion of the probability

of synchronization, ��b3�, and from the changes in the sign
of sub-Lyapunov exponents of the coupled system. The prob-
ability of synchronization is shown in Fig. 11�a� as a function
of the coupling strength, again calculated from the response
x2�t� and the auxiliary x3�t� systems, Eqs. �11b� and �11c�,
respectively, which remains zero in the range of
b3� �0,0.60� and oscillates between its maximum and mini-
mum values in a narrow range of b3� �0.60,0.68�, confirm-
ing the existence of approximate CS in the latter range.
Above b3=0.68 the probability of synchronization acquires
its maximum value depicting perfect CS between the re-
sponse x2�t� and the auxiliary x3�t� systems. Correspondingly
there exists perfect GS between the drive x1�t� and the re-
sponse x2�t� systems. Figure 11�b� shows the first 12 maxi-
mal Lyapunov exponents of the coupled drive x1�t� and the
response x2�t� systems. The least positive sub-Lyapunov ex-
ponent of the response system starts to become negative
from b3�0.60. Subsequently, all the other positive sub-
Lyapunov exponents become negative and reach saturation
in a rather narrow range of b3� �0.60,0.68�. Thus the narrow
range intermittency �IGS� transition �this can also be termed
as the immediate intermittency transition in analogy with the
terminology used in �23�� is confirmed from both the prob-
ability of synchronization, calculated from the response and
auxiliary systems, and negative saturation of sub-Lyapunov
exponents, calculated from the drive and response systems.

As discussed in the previous section, the narrow range
intermittency transition is in accordance with the stabiliza-
tion of all unstable periodic orbits of the response system in
a narrow range as a function of the coupling strength b3 and
this is reflected in the immediate transition of all the sub-
Lyapunov exponents �Fig. 11�b�� to negative values. It is also
to be noted that the narrow range intermittency transition in
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the case of the direct feedback coupling configuration can be
attributed to the fact that the strength of the coupling b3
contributes significantly proportional to the strength of the
signal x1�t� to stabilize all the UPOs immediately at the tran-
sition regime after a certain threshold value of the coupling
strength as in the case of low-dimensional systems �23�.

The robustness of the intermittency transition in a narrow
range of the coupling strength b3 for a range of values of
the parameter b2� �1.1,1.6� and the delay �1=�2� �10,20�
is shown in Fig. 12. The three-dimensional plot of the prob-
ability of synchronization as a function of the system param-

eter b2 and the coupling strength b3 is shown in Fig. 12�a�,
while Fig. 12�b� shows the three-dimensional plot of ��b3�
as a function of the coupling delay �2 and the coupling
strength b3.

IV. BROAD RANGE INTERMITTENCY TRANSITION
TO GS FOR NONLINEAR ERROR FEEDBACK

COUPLING OF THE FORM f(x1„t−�2…)− f(x2„t−�2…)

Next we demonstrate the existence of the above types of
distinct characteristic transitions for nonlinear coupling con-
figurations as well. For this purpose, we consider the unidi-
rectional nonlinear error feedback coupling of the form

ẋ1�t� = − ax1�t� + b1f„x1�t − �1�… , �13a�

ẋ2�t� = − ax2�t� + b2f„x2�t − �2�…

+ b3�f„x1�t − �2�… − f„x2�t − �2�…� , �13b�

ẋ3�t� = − ax3�t� + b2f„x3�t − �2�…

+ b3�f„x1�t − �2�… − f„x3�t − �2�…� , �13c�

where f�x� is again of the same piecewise linear form as in
Eq. �2�. The parameters are now fixed as a=1.0, b1=b2
=1.2, and �1=20 and the coupling delay �2=25, where the
delays alone form the parameter mismatch between the drive
and response systems in Eqs. �13a�–�13c�. Following
Krasvoskii-Lyapunov theory, for complete synchronization
so that the manifold �=x3�t�−x2�t� between the response
x2�t� and the auxiliary x3�t� approaches zero, one can obtain
the stability condition as

a � ��b2 − b3�f�„x2�t − �2�…� . �14�

Consequently from the form of the piecewise linear function
�2�, the stability condition �14� becomes a� �1.5�b2−b3��
� ��b2−b3��. Thus one can take

a � �b2 − b3� �15�

as less stringent condition for �7� to be valid, while
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FIG. 13. Dynamics in the phase space of the
systems �13a�–�13c�. �a� and �b� Approximate GS
and CS, respectively, for the value of the cou-
pling strength b3=0.37. �c� and �d�: Perfect GS
and CS, respectively, for the value of the cou-
pling strength b3=0.8.
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a � �1.5b2 − 1.5b3� �16�

can be considered as the most general condition specified by
�14� for asymptotic stability of the synchronized state �
=x2�t�−x3�t�=0. For the chosen values of the parameters, the
less stringent stability condition �15� is satisfied for the val-
ues of the coupling strength b3� �0.2,0.535� and the general
stability condition �16� is satisfied for b3�0.535.

As the coupling strength is increased from zero, approxi-
mate GS occurs from b3�0.2. Figure 13�a� shows the ap-
proximate GS �IGS� between the drive x1�t� �Eq. �13a�� and
the response x2�t� �Eq. �13b�� systems for the value of the
coupling strength b3=0.37, while the approximate CS be-
tween the response x2�t� �Eq. �13b�� and the auxiliary x3�t�
�Eq. �13c�� systems is shown in Fig. 13�b�. Perfect GS and
perfect CS are shown in Figs. 13�c� and 13�d�, respectively,
for b3=0.8. The intermittent dynamics exhibited by the
coupled systems at the transition regime is shown in Fig. 14,
which shows bursts at the period approximately equal to the
delay time of the response system x2�t� for bursts of ampli-
tude greater than �0.01� �Fig. 14�b��. The statistical distribu-
tion of the laminar phases away from the intermittent bursts

shows an asymptotic −1.5 power law behavior for the thresh-
old value �= �0.0001� �see Fig. 14�c��, typical for on-off in-
termittency, which is shown in Fig. 15�b�. On the other hand,
for the threshold value �= �0.1� Fig. 15�a� shows periodic
structures similar to Fig. 5�a� with peaks occurring approxi-
mately at t=nT, n=1,2 , . . ., where T��2 is the period of the
lowest periodic orbit of the uncoupled system �13b�.

Now, the intermittency transition is again characterized
using the probability of synchronization and the sub-
Lyapunov exponents as in the previous cases. Figure 16�a�
shows the probability of synchronization, ��b3�, the value of
which remains zero in the range b3� �0,0.2� due to the fact
that there is lacking any entrainment between the response
x2�t� and the auxiliary x3�t� systems, whereas it fluctuates
between the two extreme values in a rather broad range of
the coupling strength b3� �0.2,0.42�, depicting the existence
of an intermittency transition in the corresponding range of
b3. Perfect CS exists for b3�0.42 as evidenced from the
maximum value of ��b3�. Correspondingly there exists per-
fect GS between the drive x1�t� and the response x2�t� sys-
tems. Figure 16�b� shows the transition of sub-Lyapunov ex-
ponents of the spectrum of Lyapunov exponents of the
coupled drive x1�t� �Eq. �13a�� and the response x2�t� �Eq.
�13b�� systems. The sub-Lyapunov exponents become nega-
tive in the range b3� �0.2,0.42� confirming the broad range
intermittency �IGS� transition in a rather wide range of the
coupling strength and this is again due to the gradual stabi-
lization of the unstable periodic orbits of the response sys-
tems because of the less significant contribution of the cou-
pling strength b3 as the error becomes gradually smaller from
the transition regime beyond certain threshold value of the
coupling strength as discussed in Sec. II. The robustness of
the intermittency transition with the system parameter b2 and
the coupling delay �2 as a function of coupling strength b3 is
shown as three-dimensional plots in Fig. 17.
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FIG. 14. The intermittent dynamics of the response x2�t�, Eq.
�13b�, and auxiliary x3�t�, Eq. �13c�, systems for the value of the
coupling strength b3=0.37 for nonlinear error feedback coupling.
�a� Time traces of the difference x2�t�−x3�t� corresponding to Fig.
13�b�. �b� Enlarged in x scale to show bursts at periodic intervals
when bursts of larger amplitudes �� �0.01� are considered. �c� En-
larged in y scale to show random bursts when bursts of smaller
amplitudes �� �0.01� are considered.

0.001

0.01

0.1

1

0.1 1 10 100

Λ
(t

)

t

(b)

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

Λ
(t

)

t

(a)

1 x 104

FIG. 15. The statistical distribution of laminar phases corre-
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V. NARROW RANGE INTERMITTENCY TRANSITION
TO GS FOR NONLINEAR DIRECT FEEDBACK

COUPLING OF THE FORM f(x1„t−�2…)

Now we consider the unidirectional nonlinear coupling of
the form

ẋ1�t� = − ax1�t� + b1f„x1�t − �1�… , �17a�

ẋ2�t� = − ax2�t� + b2f„x2�t − �2�… + b3f„x1�t − �2�… ,

�17b�

ẋ3�t� = − ax3�t� + b2f„x3�t − �2�… + b3f„x1�t − �2�… .

�17c�

Choosing the values of the parameters as in the previous case
and following a Krasvoskii-Lyapunov functional approach
for the asymptotically stable synchronized state �=x3�t�
−x2�t�=0, one can obtain the sufficient condition for
asymptotic stability for complete synchronization of the re-
sponse x2�t� and the auxiliary x3�t� systems as

a � �b2f�„x2�t − �2�…� . �18�

The above stability condition rapidly leads to an immediate
transition to the synchronized state even for very feeble val-
ues of the coupling strength b3 for the parameter values sat-
isfying the stability condition �18� as the stability condition
is independent of b3 as in the previous linear coupling case
�Sec. III�. Hence it is difficult to identify the possible dy-
namical transitions to synchronized state as a function of the
coupling strength b3. Hence we study the synchronization

transition as a function of the coupling strength b3 by choos-
ing the parameters violating the stability condition as a
=1.0, b1=1.2, b2=1.1, and �1=�2=15.

As b3 is varied from zero for the above values of the
parameters, a transition from the desynchronized state to ap-
proximate GS occurs for b3�0.74. The approximate GS
�IGS� between the drive x1�t� and the response x2�t� variables
described by Eqs. �17a� and �17b� is shown in Fig. 18�a�,
whereas Fig. 18�b� shows approximate CS between the re-
sponse x2�t� and auxiliary x3�t� variables �Eqs. �17a� and
�17c�� for the value of the coupling strength b3=0.78. Perfect
GS and perfect CS are shown in Figs. 18�c� and 18�d�, re-
spectively for b3=0.9. Time traces of the difference x2�t�
−x3�t� corresponding to approximate CS �Fig. 18�b�� are
shown in Fig. 19, which shows intermittent dynamics with
the entrainment of the dynamical variables in random time
intervals of finite duration. Figure 19�b� shows an enlarged
picture of part of Fig. 19�a�. The statistical distribution of the
laminar phases again shows a universal asymptotic −1.5
power law behavior for the threshold value �= �0.0001�, typi-
cal for on-off intermittency, as shown in Fig. 20.

As in the previous cases, now we characterize the inter-
mittency transition to GS using the notion of the probability
of synchronization, ��b3�, and from the changes in the sign
of sub-Lyapunov exponents in the spectrum of Lyapunov
exponents of the coupled time-delay systems �17a�–�17c�.
Figure 21�a� shows the probability of synchronization,
��b3�, as a function of the coupling strength b3 calculated
from the response x2�t� and auxiliary x3�t� variables �Eqs.
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FIG. 16. �a� The probability of synchronization, ��b3�, between
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�17b� and �17c�� for CS between them. In the range of
b3� �0,0.74�, the probability of synchronization remains ap-
proximately zero. Upon increasing the value of b3, ��b3�
oscillates in the narrow range of b3� �0.74,0.78� depicting
the existence of intermittency transition. This narrow range
transition is also confirmed from the transition of successive
largest sub-Lyapunov exponents. The spectrum of the first
nine largest Lyapunov exponents �max of the coupled drive
x1�t� and response x2�t� variables �Eqs. �17a� and �17b�� is
shown in Fig. 21�b�. It is also evident from the spectrum that
the sub-Lyapunov exponents suddenly become negative in
the narrow range of b3� �0.74,0.78� and then reach satura-
tion values for b3�0.78. This confirms the narrow range
intermittency �IGS� transition to GS. This is also in accor-
dance with the immediate stabilization of all the UPOs of the
response system as discussed in Sec. III.

The robustness of the transition with the system parameter
b2 and the delay time �2 as a function of coupling strength b3
is shown as three-dimensional plots in Fig. 22.

VI. CONCLUSION

In conclusion, we have studied the intermittency transi-
tion to generalized synchronization from a desynchronized
state in unidirectionally coupled scalar piecewise linear time-
delay systems for different coupling configurations using the
auxiliary system approach. We have shown that the intermit-
tency transition to GS occurs in a broad range of coupling
strength for both linear and nonlinear error feedback cou-
pling configurations whereas it occurs in a narrow range of
coupling strength for both the linear and nonlinear direct
feedback coupling configurations. It has also been shown
that the intermittent dynamics displays periodic intermittent
bursts of period equal to the delay time of the response sys-
tems in the former cases and it takes place in random time
intervals in the latter cases. The robustness of the intermittent
dynamics with the system parameters and the delay time is
also studied as a function of the coupling strength for both
error feedback and direct feedback �linear and nonlinear�
coupling configurations. The universality of these intermit-
tent behaviors �36� �periodic and random� and their �broad
and narrow range� transitions are also confirmed for different
forms of linear and nonlinear coupling configurations in

0.4

0.8

1.2

1.6

0.7 0.8 0.9 1

x 2
(t

)

x1(t)

(a)

0.4

0.8

1.2

1.6

0.4 0.8 1.2 1.6

x 3
(t

)

x2(t)

(b)

0.4

0.8

1.2

1.6

0.7 0.8 0.9 1

x 2
(t

)

x1(t)

(c)

0.4

0.8

1.2

1.6

0.4 0.8 1.2 1.6

x 3
(t

)

x2(t)

(d)

FIG. 18. Dynamics in the phase space of the
systems �17a�–�17c�. �a� and �b� Approximate GS
and CS, respectively, for the value of the cou-
pling strength b3=0.78. �c� and �d� Perfect GS
and CS, respectively, for the value of the cou-
pling strength b3=0.9.
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other time-delay systems such as Mackey-Glass and Ikeda
systems. These distinct characteristic behaviors are analyzed
using the analytical stability condition for synchronized
state, the probability of synchronization, ��b3�, between the
response and the auxiliary systems and by the changes in the
sign of sub-Lyapunov exponents in the spectrum of
Lyapunov exponents of the drive and response systems in
both the linear and nonlinearly coupled time-delay systems.
In spite of the fact that both the probability of synchroniza-
tion and the sub-Lyapunov exponents have been calculated
from different systems, we have found good agreement be-
tween them in showing the intermittency transition in all
cases. We hope this study will contribute to the basic under-
standing of the nature of the transition to GS in coupled
time-delay systems and we are now investigating the experi-
mental verification of these findings in nonlinear electronic
circuits.
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APPENDIX: STABILITY CONDITION

To estimate a sufficient condition for the stability of the
solution �=0, we require the derivative of the functional
V�t� along the trajectory of Eq. �4�,

dV

dt
= − �a + b3��2 + b2f�„x2�t − �2�…���2

+ ��2 − ���2

2 ,

�A1�

to be negative. The above equation can be rewritten as

dV

dt
= − ��2��X,�� , �A2�

where X=��2
/�, �= ��a+b3−�� /��− �b2f�(x2�t−�2�) /��X

+X2. In order to show that dV
dt �0 for all � and ��2

and so
for all X, it is sufficient to show that �min�0. One can
easily check that the absolute minimum of � occurs at
X= 1

2�b2f�(x2�t−�2�) with �min= �4��a+b3−��−b2
2f�(x2�t

−�2�)2� /4�2. Consequently, we have the condition for stabil-
ity as

a + b3 �
b2

2f�„x2�t − �2�…2

4�
+ � = ���� . �A3�

Again ���� as a function of � for a given f��x� has an
absolute minimum at �= �b2f�(x2�t−�2�)� /2 with �min

= �b2f�(x2�t−�2�)�. Since ���min= �b2f�(x2�t−�2�)�, from
the inequality �A3�, it turns out that the sufficient condition
for asymptotic stability is

a + b3 � �b2f�„x2�t − �2�…� . �A4�

Now from the form of the piecewise linear function f�x�
given by Eq. �2�, we have
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FIG. 21. �a� The probability of synchronization, ��b3�, between
the response x2�t�, Eq. �17b�, and the auxiliary x3�t�, Eq. �17c�,
systems. �b� Largest Lyapunov exponents of the coupled drive x1�t�
and response x2�t� systems �17a� and �17b�.
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FIG. 22. The probability of synchronization ��b3� in three-
dimensional plots �a� as a function of the system parameter b2 and
the coupling strength b3 and �b� as a function of the coupling delay
�2 and the coupling strength b3 for the case of the nonlinear direct
feedback coupling configuration given by Eqs. �17a�–�17c� showing
a narrow range intermittency transition to GS.
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�f�„x2�t − �2�…� = 	1.5, 0.8 � �x2� � 4/3,

1.0, �x2� � 0.8.

 �A5�

Note that the region �x2��4 /3 is outside the dynamics of the
present system �see Eq. �2��. Consequently the stability con-
dition �A4� becomes a+b3�1.5�b2�� �b2�.

Thus one can take a+b3� �b2� as a less stringent condition
for �A4� to be valid, while

a � 1.5�b2� , �A6�

as the most general condition specified by �A4� for
asymptotic stability of the synchronized state �=0.
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